Research Institute for Advanced Computer Science
NASA Ames Research Center

’///')/ C - 1.,‘57’ /
5 -
R

i

An Application for Multi-person Task Synchronization

Robert L. Brown
Dee Doyle

(MNASA=-CP=-15T7712) AM O APPLICATIOY F WPL=-11914
MULTTI=-PERSUN TASK SYNCHRONT AT ION (Fesearch
Inst. for Altvanced Computer Lience) 14 p

CSCL 05A unclas

G3/81 0043045

RIACS Technical Report 90.24

NASA Cooperative Agreement Number NCC2-387

An Application for Multi-person Task Synchronization

Robert L. Brown
Dee Doyle

JULY 1990

The Research Institute of Advanced Computer Science is operated by Universities Space Research
Association, The American City Building, Suite 311, Columbia, MD 21044, (301) 730-2656.

The work reported on herein was supported by Cooperative Agreement Number NCC2-387 between the
National Aeronautics and Space Administration and the Universities Space Research Association.

1. Introduction

This paper describes a project to investigate computer applications that will enable a
group of people to synchronize their actions when following a pre-defined task sequence.
We assume that the people involved only have computer workstations available to them for
communication. Hence, our approach it to study how the computer can be used to help a

group remain synchronized.

It is our purpose to design and develop a series of applications that we can use as vehi-
cles for experimentation. The series will incorporate increasingly more powerful capabilities,

building on what we learn from previous versions.

An example of how this technique can be used for a remote coaching capability is ex-
plained in a report describing an experiment that simulated a Life Sciences experiment on-
board Space Station Freedom, with a ground-based Principal Investigator providing the ex-

pertise by coaching the on-orbit Mission Specialist. For more information, see [Haines89a].

2. Background

When a group of people work together in tight collaboration on a pre-defined task, such
as repairing a complicated device, performing a laboratory experiment, or preparing an aircraft
for flight, the task can usually be described as a partial ordered graph of subtasks, where
each subtask is an indivisible unit of work typically performed by a single individual. Figure
1 shows such a partial ordering. The graph is typically represented as a written set of in-

structions, as in a checklist or repair manual, or as a chart.

When the group of people are working in close physical proximity, synchronization is
typically simplified by the use of verbal communication, or a task supervisor overseeing the
progress. In the former case, the task graph can be shared, or replicated for each member. In
the latter, typically only the supervisor has the task graph and gives instructions or orders to

each subordinate member. However, when the group is geographically dispersed, such tight

communication or supervision is not as simple. Radio links can be used for verbal and video
communication, and the task graph is represented on paper and available to each member of
the group. Voice and video can be used in the supervisor model, as well, with the supervisor

parcelling out instructions in the correct order.

Though audio networks are commonplace (the telephone system), personal video net-
works are not commonly available. Digital computer networks, however, have become more
and more available to the science community, and predictions are that the trend will continue
for many years. Hence, we are investigating how these networks, and the workstations peo-

ple use to interface to them, can be used to support collaborative task sequencing.

Computer workstations have demonstrated themselves as useful in a variety of collabo-
rative tasks. Computer electronic mail can be used as a collaboration technique. A group of
people working together can stay in close contact with each other and exchange documents.
The granularity of interaction is too large, however, for electronic mail to be used for tasks

whose subtasks are much finer grained than the exchanges.

One area of past work that is particularly relevant to this work is in multimedia confer-

enceing. [continue on with MMCONF, Diamond, SLATE discussion].

() ()
People: A, B ° ° \ /

\ Subtasks

Figure 1. Partial Ordering of Subtasks

3. Possbilities for Computer-supported Task Sequencing
The remote coaching facility uses a simple sequencer in which the subtasks form a total
ordering. Such task graphs can be called a “check list” because each subtask must be com-

peted (“checked off™) before then next one begins. There is no possibility for parallelism!.

Complete seriality is not inherent to task sequencing; procedures often provide for si-
multaneous activities. A computer-support task synchronizer that supports simulteneous
activities can also support completely serial activities by simply providing it with a serial
specification. However, we do not yet understand all the issues related to task synchroniza-
tion supporting simultaneous activities, or if such has practical application for dispersed col-

laborators. Hence, we chose to study only the completely serial case at first.

4. Design of the Project

We chose to approach this project incrementally. Because of the experiences gained in
the Haines remote coaching study, we chose to mimic the software developed therein as our
starting point. However, the Haines study software is developed solely for Apple Macin-
toshes and is written using the HyperCard application. Our computing environment relies on
open systems, and our software platform includes UNIX, the X Window System, and the Mo-

tif toolkit. We did not restrict ourselves to any particular hardware platform.

We call the experimental steps in our project “phases,” where each phase consists of
a design of a tool and its implementation. Each successive phase will add functionality
based on what we learned from the previous phase. The first phase is called “phase zero”
because it directly emulates the software from the remote coaching facility and does not pro-
vide any new functionality. We expect a high degree of code sharing between phases, but

would not hesitate to begin anew at any step.

1 This does not strictly apply to the remote coaching software, which contained the possibili-
ty of a subtask requiring the user to gather several items in any order from a locker.

5. Phase Zero

As metioned, the phase zero software we designed to closely mimick the behavior of
the checklist application in the remote coaching application. However, we sought to develop
the application using open systems software technology and hence, using the X Window
System from Project Athena at MIT. We succeeded in this goal and have a configurable dis-
tributed checklist application that is transportable across many workstation platforms. We
have demonstrated this code by creating working displays on Sun Microsystems worksta-
tions, a Stardent Titan-1000, an Apple Macintosh I1, and a NCD X-station, all at the same

time.

5.1. Design

The design goal of phase zero was to allow the specification of the checklist task as a
simple text file, that can be created using any standard text editor. We designed and imple-
mented a straightforward textual language to describe the checklist. A grammar in BNF no-
tation is presented in Figure 1. The application itself is composed of two major phases: input

processing and interpretation.

The first phase is solely responsible for converting an external representation of the
checklist into an internal representation, and building the tables describing the location of
each partcipant at the same time. Because the participants can move about, the specification
of their names and locations can only be known at runtime. Hence, that information is encod-
ed as a part of the checklist specification. Arguably, the name & location information should
be separated from the checklist description itself, but standard UNIX tools allow for this sep-

aration, and subsequent combination before the invocation of the checklist application.

5.2. Implementation
The distributed checklist, or DCL, application is constructed as a single process that si-

multaneously manages several displays, one per participant. This capability takes advan-

tage of the ability of the X Window System to support remote displays, in fact, the DCL ap-

plication code need not run on the same display workstation as any of the displays.

Critical to usefulness of a distributed checklist is keeping all participants aware of the
state of the procedure. Hence, much of the activity of the application concerns assuring that

all displays reflect the same state.

Figures 2-8 show various screen images from the application. The procedure displayed

is one taken from the remote coaching experiment.

6. Conclusions and Future Work

The usefulness of the distributed checklist has been demonstrated by its application in
a remote coaching experiment. The suitability of the X Window System for this type of appli-
cation is demonstrated by the ease with which the application was built. Without the use of
a windowing system based on a server/client model, communication among the software driv-
ing the individual display would have to be explicitly coded into the application. This was the
case the the HyperCard-based implementation on the Apple Macintosh systems. By allow-

ing a single host to conrol the checklist, synchronizing the displays was simplified.

In the next generation of task synchronization application, if we pursue this project, will
enable separate activities to be performed in parallel by different participants. We do not,
however, have a target application for such a tool and will have to creat one in order to vali-

date the approach.

7. Appendix

The following five pages show screen images from the distributed checklist application.
The first page shows the initial state: Step 1 is in the middle of the list of steps and “Doyle”
is the person listed as the authority for advancing the state. The second image shows the

state of the screen for the other participant, “Vogelsong.” The third screen shows the

checklist of items that must be collected into the glovebox vestibule. The items on the list
can be checked off in any order. The fourth screen shows what happens when someone other
than the authoratative person selects to advance the list: a dialog box asks for confirmation.
The final screen shows the checklist application in one of the latest stages; the previous in-

struction is displayed as well and the current and next instruction.

[28essoupuss)[dianf {310

ATqRSIA [03wt W %[d puw moaq paaST SURI AP Awd0 (7 daig :dais waN

*100p dqMISdA x0qaA0[3) uadQ :T dayg :days Juaum)

Buos[a3oA :4q pouuwey - (:npa syerr-1adedoa : sureu Aerdsiq

dais xauwap
03 3UvApR
03 sassaxd
hog

|oBessaypuss)|dian} |11nbj

"3[MqRSIA IR 03 U 29%[d U MO[3Q PAIST] SURT P 91830 (2 dNg :days wIN aNreApy
das xausp
*100p 2MNISAA X0qaA0[3 a3 uadQ T dars :daysudrm) | o aoueape
01 sassxd
Ahog

J[An(] :Aq pouuey °(:NP° sTeRrTeWIFYIe : dureu Aefdsyq

Noaya

[sessaupuss| [d1oH]]41n0]

wed 33urs v da0urer pue RQUEP Wumds ¥ wdgy 7 dag

:daas waN

*J00p YJopTe J3uut 3y) aso[) :9 days :days yuaam)

"I00p IO AWM 3 jo do3 3P 01 IMGNSIA P WY SWKAN IR [0 938307 ¢ daag

:da1s snowary

alo(Q :Aq pauuely () p:npasTeLrIewInyoe : dureu Lepdsiq

doueApyY

das wau g
01 IUVAPS
03 sassaxd

hoQg

NEEITR)

| Pa3oa((0] swel] 1Y |
@21aap uoljexty ephyspreseIntb 3

gqnis ofud 3
Jazaauy ofiud [
stets g

adm 3

vad 3

sa166eq M)
stege] @
IRy Jueid G
4929943 deus 5]

| 9Bessaypuasiidian}|11nd]

‘100p I[qUSA X0qIA0[3 A ¥50[) € dag days I E

dais xeuap
-amqusaa ayy opur wiayy ade[d pue mo[aq pASI] swiay Ay Aedor] g dng daysuaam) | o) swape

01 s9ss31d

‘100p A[aqRSIA X0qaAo(3 Ap wdg 11 dng :days snowmazg

Suosyelop :Aq pouwely ((:npdsoeradeioa :aureu Aepdsiq

| pa3oalle] sual (1Y |
@d1aap uoriexty aphyspieeinb
qms ofJd 3

432334y oRud f)

—oE.tho 9, uoq ;mocmuN _02%_03 J_o_ s[eta 3
adim 3

uad g

{J03eJ0qe[[0 JnoR 3pTuJang m sa166eq @
S[eqe] @@

®3Iqey Juerd G

J4azaauy deus g

omemwo.tco[m:&o:__ﬁa_
"100p I[aqsIA X0qIA0B AP ¥s01D (¢ daag :das o E

daas au o
"amqnIsaA Y3 oyt wiayy aderd pue mojaq paysy swayp Ay syedor] 7 dayg :days waLm) | oy souwape

01 s9s531d
"100p IMqNSIA X0qaA0[3 3 wadg | dng :daas snoway o

BuosaBop :Aq pauuwely ('p:npa-soeriadedoa :sureu Kerdsyq

